Copied to
clipboard

G = C22.110C25order 128 = 27

91st central stem extension by C22 of C25

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C22.110C25, C42.101C23, C24.141C23, C23.145C24, C4⋊Q836C22, D46D429C2, D45D426C2, D43Q830C2, (C4×D4)⋊54C22, D4(C422C2), (C4×Q8)⋊53C22, D4.42(C4○D4), C4⋊C4.501C23, C4⋊D431C22, (C2×C4).100C24, (C2×C42)⋊67C22, C22⋊Q839C22, C22.32C249C2, (C2×D4).482C23, C4.4D487C22, C22⋊C4.33C23, (C2×Q8).459C23, C42.C261C22, C22.11C2424C2, C422C253C22, C42⋊C247C22, C22≀C2.11C22, (C22×C4).379C23, C22.45C2411C2, C2.39(C2.C25), C22.33C249C2, (C22×D4).431C22, C22.D456C22, C22.36C2421C2, C23.36C2341C2, C22.47C2424C2, C22.50C2429C2, C22.46C2424C2, C22.35C2414C2, C23.33C2330C2, (C4×C4○D4)⋊37C2, (C2×C4⋊C4)⋊80C22, C4.283(C2×C4○D4), (C2×D4)(C422C2), C22.46(C2×C4○D4), C2.66(C22×C4○D4), (C2×C422C2)⋊38C2, C22⋊C4(C422C2), (C2×C4○D4).333C22, (C2×C22⋊C4).386C22, SmallGroup(128,2253)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C22.110C25
C1C2C22C2×C4C22×C4C2×C42C4×C4○D4 — C22.110C25
C1C22 — C22.110C25
C1C22 — C22.110C25
C1C22 — C22.110C25

Generators and relations for C22.110C25
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=a, g2=ba=ab, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >

Subgroups: 748 in 521 conjugacy classes, 388 normal (122 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C4.4D4, C42.C2, C42.C2, C422C2, C422C2, C4⋊Q8, C22×D4, C2×C4○D4, C4×C4○D4, C22.11C24, C23.33C23, C2×C422C2, C23.36C23, C23.36C23, C22.32C24, C22.33C24, C22.35C24, C22.36C24, D45D4, D46D4, C22.45C24, C22.46C24, C22.46C24, C22.47C24, C22.47C24, D43Q8, C22.50C24, C22.110C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, C25, C22×C4○D4, C2.C25, C22.110C25

Smallest permutation representation of C22.110C25
On 32 points
Generators in S32
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 11)(2 32)(3 9)(4 30)(5 23)(6 16)(7 21)(8 14)(10 26)(12 28)(13 18)(15 20)(17 24)(19 22)(25 29)(27 31)
(5 7)(6 8)(9 11)(10 12)(17 19)(18 20)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11)(2 12)(3 9)(4 10)(5 21)(6 22)(7 23)(8 24)(13 20)(14 17)(15 18)(16 19)(25 29)(26 30)(27 31)(28 32)
(1 13 25 23)(2 14 26 24)(3 15 27 21)(4 16 28 22)(5 9 18 31)(6 10 19 32)(7 11 20 29)(8 12 17 30)

G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,11)(2,32)(3,9)(4,30)(5,23)(6,16)(7,21)(8,14)(10,26)(12,28)(13,18)(15,20)(17,24)(19,22)(25,29)(27,31), (5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,29)(26,30)(27,31)(28,32), (1,13,25,23)(2,14,26,24)(3,15,27,21)(4,16,28,22)(5,9,18,31)(6,10,19,32)(7,11,20,29)(8,12,17,30)>;

G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,11)(2,32)(3,9)(4,30)(5,23)(6,16)(7,21)(8,14)(10,26)(12,28)(13,18)(15,20)(17,24)(19,22)(25,29)(27,31), (5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,29)(26,30)(27,31)(28,32), (1,13,25,23)(2,14,26,24)(3,15,27,21)(4,16,28,22)(5,9,18,31)(6,10,19,32)(7,11,20,29)(8,12,17,30) );

G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,11),(2,32),(3,9),(4,30),(5,23),(6,16),(7,21),(8,14),(10,26),(12,28),(13,18),(15,20),(17,24),(19,22),(25,29),(27,31)], [(5,7),(6,8),(9,11),(10,12),(17,19),(18,20),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11),(2,12),(3,9),(4,10),(5,21),(6,22),(7,23),(8,24),(13,20),(14,17),(15,18),(16,19),(25,29),(26,30),(27,31),(28,32)], [(1,13,25,23),(2,14,26,24),(3,15,27,21),(4,16,28,22),(5,9,18,31),(6,10,19,32),(7,11,20,29),(8,12,17,30)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G2H···2L4A···4N4O···4AE
order122222222···24···44···4
size111122224···42···24···4

44 irreducible representations

dim1111111111111111124
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2C4○D4C2.C25
kernelC22.110C25C4×C4○D4C22.11C24C23.33C23C2×C422C2C23.36C23C22.32C24C22.33C24C22.35C24C22.36C24D45D4D46D4C22.45C24C22.46C24C22.47C24D43Q8C22.50C24D4C2
# reps1111242211214331284

Matrix representation of C22.110C25 in GL6(𝔽5)

100000
010000
004000
000400
000040
000004
,
400000
040000
001000
000100
000010
000001
,
100000
440000
000010
001111
001000
003034
,
400000
040000
001000
000100
000040
003304
,
120000
040000
003000
000300
000030
000003
,
100000
010000
000010
004444
001000
000001
,
200000
020000
000100
004000
004444
002021

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,4,0,0,0,0,0,4,0,0,0,0,0,0,0,1,1,3,0,0,0,1,0,0,0,0,1,1,0,3,0,0,0,1,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,3,0,0,0,1,0,3,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,2,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,1,0,0,0,0,4,0,0,0,0,1,4,0,0,0,0,0,4,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,4,2,0,0,1,0,4,0,0,0,0,0,4,2,0,0,0,0,4,1] >;

C22.110C25 in GAP, Magma, Sage, TeX

C_2^2._{110}C_2^5
% in TeX

G:=Group("C2^2.110C2^5");
// GroupNames label

G:=SmallGroup(128,2253);
// by ID

G=gap.SmallGroup(128,2253);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,184,570,1684,242]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=a,g^2=b*a=a*b,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽