p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.110C25, C42.101C23, C24.141C23, C23.145C24, C4⋊Q8⋊36C22, D4⋊6D4⋊29C2, D4⋊5D4⋊26C2, D4⋊3Q8⋊30C2, (C4×D4)⋊54C22, D4○(C42⋊2C2), (C4×Q8)⋊53C22, D4.42(C4○D4), C4⋊C4.501C23, C4⋊D4⋊31C22, (C2×C4).100C24, (C2×C42)⋊67C22, C22⋊Q8⋊39C22, C22.32C24⋊9C2, (C2×D4).482C23, C4.4D4⋊87C22, C22⋊C4.33C23, (C2×Q8).459C23, C42.C2⋊61C22, C22.11C24⋊24C2, C42⋊2C2⋊53C22, C42⋊C2⋊47C22, C22≀C2.11C22, (C22×C4).379C23, C22.45C24⋊11C2, C2.39(C2.C25), C22.33C24⋊9C2, (C22×D4).431C22, C22.D4⋊56C22, C22.36C24⋊21C2, C23.36C23⋊41C2, C22.47C24⋊24C2, C22.50C24⋊29C2, C22.46C24⋊24C2, C22.35C24⋊14C2, C23.33C23⋊30C2, (C4×C4○D4)⋊37C2, (C2×C4⋊C4)⋊80C22, C4.283(C2×C4○D4), (C2×D4)○(C42⋊2C2), C22.46(C2×C4○D4), C2.66(C22×C4○D4), (C2×C42⋊2C2)⋊38C2, C22⋊C4○(C42⋊2C2), (C2×C4○D4).333C22, (C2×C22⋊C4).386C22, SmallGroup(128,2253)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.110C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=a, g2=ba=ab, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 748 in 521 conjugacy classes, 388 normal (122 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C4.4D4, C42.C2, C42.C2, C42⋊2C2, C42⋊2C2, C4⋊Q8, C22×D4, C2×C4○D4, C4×C4○D4, C22.11C24, C23.33C23, C2×C42⋊2C2, C23.36C23, C23.36C23, C22.32C24, C22.33C24, C22.35C24, C22.36C24, D4⋊5D4, D4⋊6D4, C22.45C24, C22.46C24, C22.46C24, C22.47C24, C22.47C24, D4⋊3Q8, C22.50C24, C22.110C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, C25, C22×C4○D4, C2.C25, C22.110C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 11)(2 32)(3 9)(4 30)(5 23)(6 16)(7 21)(8 14)(10 26)(12 28)(13 18)(15 20)(17 24)(19 22)(25 29)(27 31)
(5 7)(6 8)(9 11)(10 12)(17 19)(18 20)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11)(2 12)(3 9)(4 10)(5 21)(6 22)(7 23)(8 24)(13 20)(14 17)(15 18)(16 19)(25 29)(26 30)(27 31)(28 32)
(1 13 25 23)(2 14 26 24)(3 15 27 21)(4 16 28 22)(5 9 18 31)(6 10 19 32)(7 11 20 29)(8 12 17 30)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,11)(2,32)(3,9)(4,30)(5,23)(6,16)(7,21)(8,14)(10,26)(12,28)(13,18)(15,20)(17,24)(19,22)(25,29)(27,31), (5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,29)(26,30)(27,31)(28,32), (1,13,25,23)(2,14,26,24)(3,15,27,21)(4,16,28,22)(5,9,18,31)(6,10,19,32)(7,11,20,29)(8,12,17,30)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,11)(2,32)(3,9)(4,30)(5,23)(6,16)(7,21)(8,14)(10,26)(12,28)(13,18)(15,20)(17,24)(19,22)(25,29)(27,31), (5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,29)(26,30)(27,31)(28,32), (1,13,25,23)(2,14,26,24)(3,15,27,21)(4,16,28,22)(5,9,18,31)(6,10,19,32)(7,11,20,29)(8,12,17,30) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,11),(2,32),(3,9),(4,30),(5,23),(6,16),(7,21),(8,14),(10,26),(12,28),(13,18),(15,20),(17,24),(19,22),(25,29),(27,31)], [(5,7),(6,8),(9,11),(10,12),(17,19),(18,20),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11),(2,12),(3,9),(4,10),(5,21),(6,22),(7,23),(8,24),(13,20),(14,17),(15,18),(16,19),(25,29),(26,30),(27,31),(28,32)], [(1,13,25,23),(2,14,26,24),(3,15,27,21),(4,16,28,22),(5,9,18,31),(6,10,19,32),(7,11,20,29),(8,12,17,30)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | ··· | 2L | 4A | ··· | 4N | 4O | ··· | 4AE |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C2.C25 |
kernel | C22.110C25 | C4×C4○D4 | C22.11C24 | C23.33C23 | C2×C42⋊2C2 | C23.36C23 | C22.32C24 | C22.33C24 | C22.35C24 | C22.36C24 | D4⋊5D4 | D4⋊6D4 | C22.45C24 | C22.46C24 | C22.47C24 | D4⋊3Q8 | C22.50C24 | D4 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 4 | 3 | 3 | 1 | 2 | 8 | 4 |
Matrix representation of C22.110C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 3 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 3 | 3 | 0 | 4 |
1 | 2 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 4 | 4 | 4 | 4 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 4 | 4 |
0 | 0 | 2 | 0 | 2 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,4,0,0,0,0,0,4,0,0,0,0,0,0,0,1,1,3,0,0,0,1,0,0,0,0,1,1,0,3,0,0,0,1,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,3,0,0,0,1,0,3,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,2,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,1,0,0,0,0,4,0,0,0,0,1,4,0,0,0,0,0,4,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,4,2,0,0,1,0,4,0,0,0,0,0,4,2,0,0,0,0,4,1] >;
C22.110C25 in GAP, Magma, Sage, TeX
C_2^2._{110}C_2^5
% in TeX
G:=Group("C2^2.110C2^5");
// GroupNames label
G:=SmallGroup(128,2253);
// by ID
G=gap.SmallGroup(128,2253);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,184,570,1684,242]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=a,g^2=b*a=a*b,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations